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Network Resource Allocation

Network resource allocation is ubiquitous

(a) CDNs (b) ICNs (c) Cloud computing (d) Edge/Wireless IoT

Goal

To provide faster service to demands generated by users (,), or to reduce the computation or
communication load on the system ($).
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Caching

Retrieval
cost
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QoS cost
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Caching – Model
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When a request batch rt arrives, the cache
incurs the following cost:

frt(xt) =
N

∑
i=1

wirt,i(1 − xt,i).
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Caching – Setting

Policy
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Caching – Performance Metric

Definition

The regret of a policy A is defined as

RegretT (A) ≜ sup
{rt}

T
t=1∈R

T

{
T

∑
t=1

frt(xt) −min
x∈X

T

∑
t=1

frt(x)} .

When RegretT (A) is sublinear in T , the policy A experiences no regret on average as T →∞.
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Caching – Online Mirror Descent (OMD)

A mirror map Φ ∶ D ⊂ RN → R defines a unique algorithm, e.g., Φ(x) = 1
2 ∥x∥

2
2 defines OGD,

and Φ(x) = ∑i∈N xi log(xi) (negative entropy) defines OMDNE.

Figure: OMD update rule [Bub15].
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Caching – Contributions

● We provide the first results to guide the selection of the best policy.

Theorem

OGD is optimal for R
h ≤ k (low diversity and large cache sizes). OMDNE is optimal for

R
h > 2

√
Nk (high diversity and small cache sizes).

● We provide a highly efficient projection algorithm for OMDNE that yields a policy with
lowest time-complexity among recent works [PDVI19, PS21, BBS20, MS21].
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● We provide the first results to guide the selection of the best policy.

Theorem

OGD is optimal for R
h ≤ k (low diversity and large cache sizes). OMDNE is optimal for

R
h > 2

√
Nk (high diversity and small cache sizes).

● Highly efficient projection algorithm for OMDNE that yields a policy that has the lowest
time-complexity per iteration among recent works [PDVI19, PS21, BBS20, MS21].
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Caching – Update Costs

We define the update cost at time t as UCrt(xt,xt+1) ≜ ∑i∉supp(rt)w
′
imax{0, xt+1,i − xt,i}.

(1) (2)

1
3 2 4 1

Repository

Retrieve

1

Retrieve

4

request

(1) (2)

1 2 3 4

Fractional Caching Incurs no Update Costs

We prove that any request batch rt, for OMDNE or OGD, it holds UCrt(xt,xt+1) = 0.
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Integral Caching – Necessity of Randomization

Fractional
Caching

Integral
Caching

Proposition

Any deterministic policy restricted to select integral cache states in Z ≜ X ∩ {0,1}N has linear
regret, i.e.,

RegretT (A) ≥ k (1 − k/N)T.
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Randomized Integral Caching

We restrict ourselves to randomized rounding schemes that output zt ∈ Z such that
E[zt] = xt through some rounding Ξ.

Remark

The expected regret RegretT (A,Ξ) is the same as the regret of A.

A scheme that has this property is Madow’s sampling [MM44]:
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Randomized Integral Caching

When considering the extended regret (E-RegretT (A,Ξ)) we lose immediately the regret
guarantee:

Theorem

Any randomized caching policy constructed by an online policy A combined with online
independent rounding as Ξ leads to Ω(T ) E-Regret(A,Ξ).

Imposing dependence (coupling) between the two consecutive random states may significantly
reduce the expected update cost.
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Randomized Integral Caching – Optimal Transport

Remark

We prove that this scheme selected as Ξ, coupled with a no-regret policy A, has sublinear
extended regret guarantee. However, it has a time-complexity O (N3).
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Randomized Integral Caching – Simpler Approach

Theorem

A no-regret policy A combined with online coupled rounding Ξ has O (
√
T) E-RegretT (A,Ξ).

Online Coupled Rounding has linear time complexity.
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Randomized Integral Caching – Summary
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Caching – Research Output

[C1] IEEE ICC, 2021 
T. Si Salem , G. Neglia, and S. Ioannidis

No-Regret Caching via Online Mirror Descent

[C2] ACM SIGMETRICS, 2022 
Y. Li, T. Si Salem et al. 

Online Caching Networks with Adversarial Guarantees

[J1] ACM POMACS, 2022 
Y. Li, T. Si Salem et al. 

Online Caching Networks with Adversarial Guarantees

[S1] ACM ToMPECS (under review)  
T. Si Salem , G. Neglia, and S. Ioannidis

No-Regret Caching via Online Mirror Descent (extended)
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Similarity Caching

? ? ? ?

QoS cost

Network cost

Cost
savings

Retrieval
cost

? ?

similar objects

22 / 55



Similarity Caching

? ? ? ?

QoS cost

Network cost

Cost
savings

Retrieval
cost

?

Dissimilarity cost

23 / 55



Similarity Caching – Motivation

Models?
Video caching

? Models
(       , dog)

(       , dog)

(        , cat) Classification results reuse \
Image retrieval

Recommender systems
? Models

? Models Caching Networks

Content recommendation [SS16, SGSV18, CS20], content retrieval [FLO+08, PBC+09],
Machine Learning serving [DGT+17, DGN17, CWZ+17, VGGK18, KBVA19].
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Similarity Caching – Model
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Similarity Caching – Caching Gain

When r ∈R is received, a cache with allocation vector x ∈ {0,1}2N incurs the cost

C(r,x) =
2N

∑
i=1

c(r, πri )xπr
i
⋅ 1
⎛

⎝

i

∑
j=1

xπr
j
≤ k
⎞

⎠
.

Objective

Our objective is to maximize the caching gain (cost savings) as the cache state x changes,
given as

G(r,x) ≜ C(r, empty cache) −C(r,x).
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Similarity Caching – Performance Metric

Definition

The regret of the randomized policy A with the cache states {xt}
T
t=1 is given by

ψ-Regret(A) = sup
{r1,r2,...,rT }∈RT

{max
x∈X

ψ
T

∑
t=1

G(rt,x) −E [
T

∑
t=1

G(rt,xt)]} .

The constant ψ = 1 − 1/e is the best approximation ratio achievable in P to the NP-Hard
static optimum

When ψ-Regret(P) is sublinear in T , the policy experiences no regret on average as
T →∞ w.r.t. the ψ-approximation of the offline problem in hindsight.

27 / 55



Similarity Caching – Exploiting OCO

Lemma

The caching gain can be expressed equivalently as

G(r,x) = ∑Kr−1
i=1 αr

i min{k,∑i
j=1 xπr

j
} +G0,

where αr
i ∈ R≥0, G0 ∈ R, and Kr ∈ N are constants.

The fractionally relaxed problem can be cast in the framework of OCO [Haz16] + Exploit the
property E [G(rt,xt)] ≥ ψG(rt,yt).
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Similarity Caching – AÇAI (Ascent Similarity Caching with
Approximate Indexes) Policy

Adapt stateIncur gain

Virtual

Physical

OMA

Randomized
rounding

Receive
request

Local catalog
index

Global catalog
index

(b)

Serve from
cache

Fetch from
server

(a)
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Similarity Caching – AÇAI Policy Performance Guarantees

Theorem

AÇAI configured with a negentropy mirror map, learning rate η∗, and rounding scheme
ElasticCoupledRounding or DepRound with a freezing period M = Θ (T β) for β ∈ [0,1)
satisfies

(1 − 1/e)-RegretX (AÇAI) = O (T
1+β
2 ) .

The parameter M reduces cache updates at the expense of reducing the cache reactivity. The
update cost CUC,T is given as CUC,T = O (T

1−β) for DepRound and CUC,T = O (
√
T ) for

ElasticCoupledRounding.
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Similarity Caching – Service/Update Costs Tradeoff
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Similarity Caching – A Heuristic under Continuous Catalogs

Caching Scheme

GRADES heuristic uses gradient descent to
navigates the continuous space and find
appropriate objects to store in the cache.
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Similarity Caching – Research Output

[C3] IEEE INFOCOM, 2021 
A. Sabnis, T. Si Salem et al. 

GRADES: Gradient Descent for Similarity Caching

[C4] ITC 33, 2021 
T. Si Salem, G. Neglia, and Damiano Carra. 

AÇAI: Ascent Similarity Caching with Approximate Indexes 
Best Paper Award

[J2] IEEE/ACM ToN, 2022 
A. Sabnis, T. Si Salem et al. 

GRADES: Gradient Descent for Similarity Caching (extended)

[J3] IEEE/ACM ToN, 2022  
T. Si Salem, G. Neglia, and Damiano Carra. 

Ascent Similarity Caching with Approximate Indexes (extended) 
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Inference Delivery Networks

ML task

Devices Cloud

Current ML deployment

Simpler models available locally have low accuracy. Complex models in the cloud may
introduce high latency
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Inference Delivery Networks

ML task

Devices CloudEdge to Cloud

IDNs

Integrate ML inference in the continuum between end-devices and the cloud.
.
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Inference Delivery Networks – Model
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Differences with Vanilla Similarity Caching

● Models have serving capacity, and can
saturate when their capacity is exceeded
● Distribute allocation decisions among
computing nodes with limited information
exchange
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Inference Delivery Networks – Contributions

Contribution

We propose a distributed online allocation algorithm for IDNs with a ψ-regret guarantee.
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Inference Delivery Networks – Research Output

[C5] MedComNet, 2021  
T. Si Salem et al. 

Towards Inference Delivery Networks: Distributing Machine
Learning with Optimality Guarantees 

[S2] IEEE/ACM ToN, 2022 (under review)   
T. Si Salem et al. 

Towards Inference Delivery Networks: Distributing Machine
Learning with Optimality Guarantees 
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Fairness in Dynamic Resource Allocation

How to enforce
fairness?

Timeslots Horizon-fairness (HF)

Slot-fairness (SF)

An α-fairness function Fα ∶ U → R is parameterized by the inequality aversion parameter
α ∈ R≥0, and it is given by

Fα(u) ≜

⎧⎪⎪
⎨
⎪⎪⎩

∑i∈I
u1−α
i −1

1−α , for α ∈ R≥0 ∖ {1},
∑i∈I log(ui), for α = 1,
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Fairness in Dynamic Resource Allocation

Consider a system with two agents I = {1,2}, an allocation set X = [0, xmax] with xmax > 1,
α-fairness criterion with α = 1, even T ∈ N, and the following sequence of utilities

{ut(x)}
T
t=1 = {(1 + x,1 − x) , (1 + x,1 + x) , . . .} .

0 1 2 3
Allocation x

0.0

0.5

1.0

1.5

2.0

2.5

Ob
je

ct
iv

e

Social welfare
 gap

HF objective:   F1(1
T

t
ut(x))

SF objective:        1T
t

F1(ut(x))

Social welfare:     1T
t

F0(ut(x))

HF allocation
SF allocation

Price of Fairness under HF and SF objectives for xmax = 3. The green shaded area provides the
set of allocation unachievable by the SF objective but achievable by the HF objective.
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Fairness in Dynamic Resource Allocation

We propose the fairness regret metric:

Definition

The long-term fairness regret of a policy A under α-fairness is defined as follows:

RT (Fα,A) ≜ sup
{ut}

T
t=1∈U

T

{Fα (
1

T
∑
t∈T

ut(x⋆)) − Fα (
1

T
∑
t∈T

ut(xt))} .

When limT→∞RT (Fα,A) = 0 , policy A will attain the same fairness value as the static
benchmark under any possible sequence of utility functions.
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Fairness in Dynamic Resource Allocation

Impossibility Result

We prove that vanishing regret cannot be achieved in presence of an unrestricted adversary (as
the one assumed in OCO).

We prove that mild restrictions on the adversary’s capabilities make vanishing regret
achievable. We provide an online policy that indeed guarantees vanishing regret under these
restrictions.

Necessary Restrictions

These restrictions capture several practical utility patterns, such as non-stationary corruptions,
ergodic and periodic inputs [LGK22, BLM22, ZLL+19, DAJJ12].
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Fairness in Dynamic Resource Allocation - OHF Policy

No learning rate tuning
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Fairness in Dynamic Resource Allocation - OHF Policy

Formulate an Online Saddle Point problem
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Fairness in Dynamic Resource Allocation - OHF Policy

Adapt allocation
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Fairness in Dynamic Resource Allocation - OHF Policy

Correct fairness "weights"
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Fairness in Dynamic Resource Allocation

?

?

?

 

 

An application: a network comprised of a set of caching nodes C. A request arrives at a cache
node c ∈ C, it can be partially served locally, and if needed, forwarded along the shortest
retrieval path to another node to retrieve the remaining part of the file.
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Fairness in Dynamic Resource Allocation – Some Results

(a) Tree-1 (b) Tree-2 (c) Tree-3

(a) α = 1 (b) α = 2 (c) α = 3 (d) Price of Fairness
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Fairness in Dynamic Resource Allocation – Some Results

(a) (b) (c)

The time-averaged utility across different agents obtained by OHF policy and OPT for α = 2
under an increasing number of agents in {2,3,4} and Tree 1–3 network topology.
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Fairness in Dynamic Resource Allocation – Some Results
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Fairness in Dynamic Resource Allocation – Research Output

[C6] ACM SIGMETRICS, 2023 
T. Si Salem, G. Iosifidis, and G. Neglia

Enabling Long-term Fairness in Dynamic Resource Allocation 

[J4] ACM POMACS, 2023 
T. Si Salem, G. Iosifidis, and G. Neglia. 

Enabling Long-term Fairness in Dynamic Resource Allocation

During 5 months visit at TU Delft,
Netherlands

51 / 55



Presentation Organization

1. Network Resource Allocation

2. Caching

3. Similarity Caching

4. Inference Delivery Networks

5. Fairness in Dynamic Resource Allocation

6. Concluding Remarks

52 / 55



Concluding Remarks

● We demonstrated the versatility of gradient algorithms on inherently combinatorial
problems when paired with an opportune randomized rounding scheme.
● Our extensive experimental findings support the thesis that these algorithms are robust and
can adapt to changing external system’s parameters.
● We proposed a novel long-term online fairness framework for settings where the agents’
utilities are subject to unknown, time-varying, and potentially adversarial perturbations.
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Potential Future Work

● Investigate dimensionality reduction techniques to diminish the operational complexity of
online learning algorithms.
● Bridge the horizon-fairness and slot-fairness criteria to target applications where the
agents are interested in ensuring fairness within a target time window.
● Add support for coalition formation in our fairness framework.
● Consider a limited feedback scenario where only part of the utility is revealed to the agents.
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Thank you for your attention.
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Sébastien Bubeck, Convex Optimization: Algorithms and Complexity, Foundations and
Trends in Machine Learning 8 (2015), no. 3–4, 231–357.

M. Costantini and T. Spyropoulos, Impact of Popular Content Relational Structure on
Joint Caching and Recommendation Policies, 2020 18th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 2020,
pp. 1–8.



References II

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and
Ion Stoica, Clipper: A Low-Latency Online Prediction Serving System, 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), 2017,
pp. 613–627.

John C Duchi, Alekh Agarwal, Mikael Johansson, and Michael I Jordan, Ergodic Mirror
Descent, SIAM Journal on Optimization 22 (2012), no. 4, 1549–1578.

Utsav Drolia, Katherine Guo, and Priya Narasimhan, Precog: Prefetching for Image
Recognition Applications at the Edge, Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, SEC ’17, 2017.

Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan, Cachier:
Edge-Caching for Recognition Applications, 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 2017, pp. 276–286.



References III

Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fausto Rabitti,
A Metric Cache for Similarity Search, Proceedings of the 2008 ACM workshop on
Large-Scale distributed systems for information retrieval, 2008, pp. 43–50.

Elad Hazan, Introduction to Online Convex Optimization, Foundations and Trends® in
Optimization 2 (2016), no. 3–4, 157–325.

A. Kumar, A. Balasubramanian, S. Venkataraman, and A. Akella, Accelerating deep
learning inference via freezing, 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), 2019.

Luofeng Liao, Yuan Gao, and Christian Kroer, Nonstationary Dual Averaging and Online
Fair Allocation, ArXiv e-prints (2022).

William G Madow and Lillian H Madow, On the Theory of Systematic Sampling, Ann.
Math. Statist. 15 (1944), no. 4, 1–24.



References IV

Samrat Mukhopadhyay and Abhishek Sinha, Online Caching with Optimal Switching
Regret, 2021 IEEE International Symposium on Information Theory (ISIT), 2021,
pp. 1546–1551.

Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja Josifovski, Ravi Kumar, and
Sergei Vassilvitskii, Nearest-Neighbor Caching for Content-Match Applications,
Proceedings of the 18th International Conference on World Wide Web, WWW ’09, 2009,
pp. 441–450.

Georgios S Paschos, Apostolos Destounis, Luigi Vigneri, and George Iosifidis, Learning to
Cache With No Regrets, IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, 2019, pp. 235–243.

Debjit Paria and Abhishek Sinha, LeadCache: Regret-Optimal Caching in Networks,
Advances in Neural Information Processing Systems 34 (2021), 4435–4447.



References V

P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, Soft Cache Hits: Improving
Performance Through Recommendation and Delivery of Related Content, IEEE Journal on
Selected Areas in Communications 36 (2018), no. 6, 1300–1313.

Thrasyvoulos Spyropoulos and Pavlos Sermpezis, Soft Cache Hits and the Impact of
Alternative Content Recommendations on Mobile Edge Caching, Proceedings of the
Eleventh ACM Workshop on Challenged Networks, CHANTS ’16, 2016, pp. 51–56.

Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas Katrinis, Shadow
Puppets: Cloud-level Accurate AI Inference at the Speed and Economy of Edge, USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18), July 2018.

Yu-Hang Zhou, Chen Liang, Nan Li, Cheng Yang, Shenghuo Zhu, and Rong Jin, Robust
online matching with user arrival distribution drift, Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 459–466.


	Network Resource Allocation
	Caching
	Similarity Caching
	Inference Delivery Networks
	Fairness in Dynamic Resource Allocation
	Concluding Remarks

