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Problem Statement

Modern machine learning (ML) struggles with limited data and dynamic real-world
conditions.

• Data acquisition for many ML tasks is often constrained by resource limita-
tions, including sample size, temporal factors, and computational power.

• The deployment of ML models is challenged by the phenomenon of concept
drift, where the underlying relationships between input features and target
variables evolve over time.

This research aims to address the following question:

How can we effectively optimize data acquisition, data freshness, and
model selection methodologies in dynamic environments

characterized by concept drifts?

Contributions

This work makes several key contributions to the study of active learning in dy-
namic environments with concept drift.

• Novel Framework for Dynamic Active Learning. We introduce a novel
framework for active learning in dynamic environments, incorporating con-
cept drift and data freshness. This framework addresses the challenge of
limited-capacity context retention by integrating data collection, freshness de-
cisions, and model retraining strategies.

• Theoretical Analysis and Decoupled Approach. We provide a rigorous
theoretical analysis, identifying the inherent trade-off between variance and
bias. To address this, we propose a decoupled approach: a variance re-
duction policy for experimental design and a bias reduction policy for data
freshness parameter selection.

• Unified Framework with Dynamic Regret Guarantees. We present a uni-
fied framework for instantiating concrete policies, leveraging online mirror de-
scent (OMD). We establish dynamic regret guarantees, extending beyond
static settings, and adapt OMD for both full-information and bandit settings.

Main Assumptions

Assumption 1. (Compact Experiments and Query Sets) Experiments x ∈ X and
x′ ∈ Z are uniformly bounded under the ℓ2 norm by DX and DZ , respectively.
Formally, ∥xxx∥2 ≤ DX ,

∥∥xxx′∥∥2 ≤ DZ for all xxx ∈ X ,xxx′ ∈ Z.

Assumption 2. (Compact Parameter Set) We assume that the true model param-
eters βββ⋆t for t ∈ [T ], are uniformly bounded. Specifically, there exists a positive
constant B⋆ such that ∥βββ⋆t∥2 ≤ B⋆ for all t ∈ [T ].

Assumption 3. (Invertible Design Matrices) The matrix
∑

xxx∈X xxxxxx⊺ is non-
singular, meaning that there exists a positive constant ω ∈ R>0 such that the
following inequality holds:

∑
xxx∈X xxxxxx⊺ ⪰ |X |ωIII ≻ 0.

Assumptions 1–2 guarantee the compactness of the experimental design space,
the query space, and the model space. This compactness assumption is fre-
quently employed in the analysis of learning problems, facilitating the establish-
ment of various theoretical properties. Furthermore, Assumption 3 ensures the
invertibility of the covariance matrix VVV (πππ), enabling the well-definedness of the
inference model.

Proposed Approach
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Data Collection. The policy has access to a pool of experiments X ⊂ Rd to collect labels
from a variety of experimental sources, such as sensors, surveys, and databases. A data
retention policy purges datasets exceeding an age threshold τ ∈ N. The set of all feasible
experimental designs is

X ≜
{
πππ ∈ [0, 1]X : ∥πππ∥1 = 1

}
.

The collected labels is some noisy perturbation of a true underlying linear model:

yt = βββ⋆t · xxx + ξ ∼ N(βββ⋆t · xxx, σ2)

Model Retraining. The LSE model is trained only on the data selected at timeslot t, i.e.,
the datasets Dt−τt,Dt−τt+1, . . . ,Dt. The estimator is given by

β̂̂β̂βt =
1

M
VVV −1(πππt−τt:t)XXX

⊺yyy
(
Dt−τt:t

)
,

where XXX = (xxx⊺)xxx∈X , VVV (πππ) =XXX⊺diag (πππ)XXX, and yyy(D) = (
∑

(xxx,yi)∈Dxxx
yi)xxx∈X .

Model Deployment. During deployment, the trained model β̂ββt is used to predict labels for
experiments xxxt ∈ Z ⊂ Rd. User feedback in the form of prediction errors is collected to
refine the model.
Performance Metric. We compare the performance of the sequence of designs and data-
freshness parameters w.r.t. the best design in hindsight and data-freshness window size
after seeing all the queries in terms of the EPE:

RT (PPP) ≜ E

 T∑
t=τ+1

ft(πππt−τt, . . . ,πππt)− min
{πππ⋆t}

T
t=1∈

T
X ,{τ⋆t }

T
t=1∈T T

T∑
t=τ+1

ft(πππ
⋆
t−τ⋆t

, . . . ,πππ⋆t )

,

Taming the Regret

We propose a policy PPPEntropic−VBR that decides data-freshness τt and experimental de-
signs πππt.

Under proper assumption, we establish the following regret guarantees:

RT (PPPEntropic−VBR) = O
(√

log(1/σ)P
⋆,v
T T +

√
log(T )P

⋆,b
T T + P

⋆,v
T

)
,

under path lengths P
⋆,v
T and P

⋆,b
T .

This results suggests that, as the path length grows sublinearly, the average regret of the
policy approaches zero.

Numerical Demonstration
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Evolution of the policy-learned data-freshness distribution over time,
illustrating the non-trivial nature of the optimal window size.

The performance evaluation shows that a uniform experimental design with
the maximum freshness window is the least effective baseline (β). Optimiz-
ing the data-freshness window improves performance (γ), and further gains are
achieved by optimizing the experimental design (δ). Our proposed policy (α) out-
performs the baseline, demonstrating its ability to identify optimal sequences of
designs and freshness windows.

Conclusion

This work has presented a comprehensive investigation of active learning in dy-
namic environments characterized by concept drift.
Potential avenues for future research:

• Beyond Non-linear Relationships. To improve the flexibility and accuracy
of the model, future work could explore non-linear models, such as those
based on kernel methods.

• General Noise Models. Expanding the framework to accommodate more
general noise models would increase its applicability to a wider range of
real-world scenarios.


