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WHY YOU SHOULD CARE ABOUT OPTIMAL TRANSPORT?
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MONGE SOIL-TRANSPORT PROBLEM

Figure. Gaspard Monge (Optimal Transport, 1781)

In 1781, Gaspard Monge (founder of ENS and École Polytechnique and participant in the French
Revolution) tackled a seemingly simple task: efficiently moving dirt for embankments. This birthed
the field of optimal transport, with applications far beyond just dirt!
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MONGE FORMULATION

Consider the probem involving efficient distribution of muffins from bakeries to coffee shops. For
simplicity, assume six bakeries and coffee shops represented in Figure 1 (red points - bakeries, blue
points - coffee shops). We aim to minimize the total travel time. Denote by Ci,j ∈ R≥0 the travel time
between bakery i ∈ [6] ≜ {1,2,3,4,5,6} and coffee shop j ∈ [6] (C3,4 = 10 implies a ten-minute
commute). Each café is connected to one and only one bakery. We will note the permutation

σ ∶ i ∈ [6] Ð→ j ∈ [6] (1)

such a choice of connections.

Figure. Cost matrix and associated connections. Left: a row of the cost matrix. Right: a particular example of
permutation (σ(1) = 5, σ(2) = 2, σ(3) = 6, σ(4) = 1, σ(5) = 3, σ(6) = 4).
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MONGE FORMULATION

Figure. Examples of permutations with different costs.

The transport cost associated with a choice σ is the sum of the costs Ci,σ(i) selected by σ:

Cost(σ) ≜ C1,σ(1) +C2,σ(2) +C3,σ(3) +C4,σ(4) +C5,σ(5) +C6,σ(6). (2)

For example, for the permutation σ depicted in the figure, the cost is:

C1,5 +C2,2 +C3,6 +C4,1 +C5,3 +C6,4 = 10 + 7 + 15 + 10 + 14 + 9 = 65.
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MONGE FORMULATION

Monge’s problem seeks the permutation σ that minimizes the cost, formulated as the optimization
problem:

min
σ∈Σ6

Cost(σ), (3)

where Σ6 denotes the set of permutations of set [6].
● Solving this problem becomes computationally intractable due to its combinatorial nature. An
exhaustive search for the optimal transport plan necessitates checking all permutations, leading
to ∣Σ6∣ = 6! = 720 possibilities in our small example.
● However, this approach quickly becomes infeasible for larger problems. For instance, with
n = 100, the number of possibilities explodes to 10100, exceeding the estimated numbers of
neurons in the human brain (1011) and atoms in the universe (1079). This highlights the need for
efficient alternative optimization methods for larger instances.
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MONGE FORMULATION — PERMUTATION MATRICES

Note that each permutation σ ∈ Σn can be represented by a permutation matrix PPP. This matrix is
binary (containing only 0s and 1s) and has dimensions n × n. Specifically, Pi,j = 0 unless j = σ(i), in
which case Pi,σ(i) = 1. As an example, consider n = 3 points. Permutations (1,2,3) → (1,2,3),
(1,2,3) → (3,2,1) are represented by their respective 3 × 3 matrices.

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 1
0 1 0
1 0 0

⎞
⎟
⎠
. (4)
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OPTIMAL TRANSPORT OF KANTOROVICH

Figure. Leonid Kantorovich (Kantorovich’s formulation of OT, 1942)

In the 1940s, Kantorovich’s key insight hinges on replacing Monge’s set of permutations with a
larger, more tractable set.

Pn =
⎧⎪⎪⎨⎪⎪⎩
PPP ∈ {0,1}n×n ∶ ∀i,∑

j

Pi,j = 1,∀j,∑
i

Pi,j = 1
⎫⎪⎪⎬⎪⎪⎭
Ô⇒ Bn ≜ conv (Pn) ∈ [0,1]n×n. (5)

The Kantorovitch problem aims to solve

min
P ∈Bn

∑
i,j

Pi,jCi,j (6)

over the relaxed set of doubly stochastic matrices.
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OPTIMAL TRANSPORT OF KANTOROVICH — SIMPLEX ALGORITHM

Figure. George Dantzig (Simplex Algorithm, 1947)

George Dantzig’s groundbreaking work that introduced the simplex algorithm to solve linear
programs, marks a second revolution in this field. (One could recognize that the OT problem is a
linear program.)

Why Relax?

This is good news because we have moved from the computationally difficult realm of combinatorics
to the comfortable world of convex optimization. Optimization over a matrix space might sound
difficult but it is usually much simpler than searching among possible assignments. (The simplex
algorithm runs in O(n3) iterations under this problem.)
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THE WEIGHTED CASE

Need for the Weighted Case

Monge formulation of OT assumes an equal number of coffee shops and bakeries. However, this
creates an impossible scenario because sets with different sizes cannot be perfectly matched (not a
bijection mapping).
Instead of considering the number of bakeries and coffee shops, a more relevant approach employs
their production and consumption distributions. These are denoted by (a1, . . . , an) for bakeries and
(b1, . . . , bm) for coffee shops, respectively. Each ai represents the daily production of the ith bakery,
while each bj represents the daily consumption of the jth coffee shop. For instance, a1 = 45 indicates
that the first bakery produces 45 croissants daily, and b3 = 34 signifies that the third coffee shop
consumes 34 croissants daily. Naturally, these quantities must be positive, and satisfy

a1 +⋯ + an = b1 +⋯ + bm. (7)

Coupling Matrices and Distributions

Kantorovich’s construction naturally adapts to the case of general distributions, replacing the
doubly stochastic matrices by matrices of coupling which satisfies the mass conservation constraint:

B(a, b) ≜
⎧⎪⎪⎨⎪⎪⎩
PPP ∈ [0,1]n×m;∀i,∑

j

Pi,j = ai,∀j,∑
i

Pi,j = bj
⎫⎪⎪⎬⎪⎪⎭
, (8)
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ALTERNATIVE WAYS OF REPRESENTING COUPLINGS

Source
Sink

Flows

Figure. Subfig (d) depicts the connection of OT and min-cost flow problems.
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COUPLING MATRICES: DEMYSTIFYING THE NAME

Coupling in ActionProbabilistic Formulation

Matrices PPP ∈ B(a, b) are indeed coupling matrices. Random state X2 can be fully determined by
coupling matrix (transport plan) PPP and random state X1. The random states X1 and X2 are then
said to be coupled!
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COMPUTATIONAL OPTIMAL TRANSPORT: REGULARIZATION

In 2013, Marco Cuturi developed computational speedup techniques for the optimal transport
problem. This trick involves penalizing transport plans that lack diversity, as measured by the
Shannon entropy. To achieve this, we tweak the optimization problem in this way:

min
P ∈Bn(aaa,bbb)

∑
i,j

Pi,jCi,j − ϵ ⋅H(PPP), (9)

where H(PPP) = −∑i,j Pi,j log(Pi,j) and ϵ ≥ 0 is a regularization parameter.

An Example

When ϵ→∞, the solution is PPP⋆ = (aibj)i,j (product distribution) and when ϵ→ 0 the original
formulation is recovered.
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Pi,jCi,j − ϵ ⋅H(PPP), (10)

where H(PPP) = −∑i,j Pi,j log(Pi,j) and ϵ ≥ 0 is a regularization parameter.

Why Regularize?

Marco Cuturi (2013) only demonstrated speedups empirically via Sinkhorn’s Algorithm. It was later
proved (Altschuler et al., 2019; Dvurechensky et al., 2019) that we achieve nearly linear time
convergence after adding the entropy regularization to an approximator (the quality of the solution
depends on ϵ).
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OPTIMAL TRANSPORT THEORY — WASSERSTEIN DISTANCE OR

KANTOROVICH–RUBINSTEIN METRIC

Motivation
We wish to compare the following distributions. A natural metric to compare probability
distributions ppp and qqq is the KL divergence DKL(ppp ∣∣qqq) ≜ ∑i pi log(pi/qi).

Figure. Three examples with infinite KL divergence. These distributions are infinitely far apart according to
KL divergence.
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OPTIMAL TRANSPORT THEORY — WASSERSTEIN DISTANCE OR

KANTOROVICH–RUBINSTEIN METRIC

A Robust Metric
The name “Wasserstein distance” was coined by R. L. Dobrushin in 1970 from the work of Leonid
Vaseršteı̆n on Markov processes. However, the metric was first defined by Kantorovich in 1939.
(Some scholars encourage the use of the terms “Kantorovich metric” and “Kantorovich distance”.)

Wp(ppp,qqq) ≜ min
PPP∈B(ppp,qqq)

(E(X1,X2)∼PPP [d(X1,X2)p])
1
p . (11)

Figure. Unlike KL divergence, the Wasserstein distances in these examples are finite and intuitive.
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CONTINUOUS FORMULATION (INFINITESIMAL MASS)

Monge’s Formulation

Given probability measures µ on X and ν on Y , Monge’s formulation of the optimal transportation
problem is to find a transport map T ∶X → Y that realizes the infimum

inf {∫
X
c(x,T (x))dµ(x) ∣ T ♯µ = ν} ,

where T ♯µ denotes the push forward of µ by T . A map T that attains this infimum is called an
"optimal transport map".

Kantorovich’s Formulation
Kantorovich’s formulation of the optimal transportation problem is to find a probability measure γ
on X × Y that attains the infimum

inf {∫
X×Y

c(x, y)dγ(x, y) ∣ γ ∈ Γ(µ, ν)} ,

where Γ(µ, ν) denotes the collection of all probability measures on X × Y with marginals µ on X
and ν on Y .
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APPLICATIONS OF THE CONTINUOUS FRAMEWORK

Yann Brenier established the equivalence between Monge’s and Kantorovich’s formulations under
specific conditions. By bridging the transport problem with partial differential equations, it paved
the way for groundbreaking discoveries, including Fields Medals awarded to Cédric Villani (2010)
and Alessio Figalli (2018).

(a) Cédric
Villani (Fields
Medal, 2010)

(b) Alessio Figalli
(Fields Medal for his
contributions to the
theory of optimal
transport, 2018)
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CONCLUSION

Thank you for your attention!

T. SI SALEM INTRODUCTION TO OPTIMAL TRANSPORT 19 / 19


