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Motivating Problem: Prediction from Expert Advice
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Motivating Problem: Prediction from Expert Advice

The player has to choose among the advice of n given experts. After making their choice, a loss between in
[0,1] is incurred. A player constructs a “belief” (distribution) over the set of experts

n ≜ {x ∈ [0,1]
n
∶ ∥x∥1 = 1} . (1)

At each time step t = 1 to T ,

● Player decides xt ∈ n and samples expert it ∼ xt

● Adversary picks losses of each expert lt = (lt,i)i∈[n] and reveals them to the player.

● Player suffers an expected loss ft(xt) = Ei∼xt [lt,i] = lt ⋅xt.

In this setting, the optimization error is ill-defined. Instead, the goal of the player is to minimize regret:

regretT =
T

∑
t=1

lt ⋅xt − min
i⋆∈[n]

T

∑
t=1

lt,i⋆ . (2)

The goal of the player is to have sublinear regret (regretT = o(T )), i.e., on average the losses experienced by the
player is as good as the best expert in hindsight.
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Motivating Problem: Prediction from Expert Advice

A natural strategy. Consider that at timeslot t, the player greedily selects the best expert seen so far, also known
as the follow the leader strategy (or fictitious play in game theory).

Theorem 1

FTL strategy incurs regretT = Ω(T ).

Proof.

Consider two experts n = 2 and a sequence of losses l1 = (1,0), l2 = (0,1), . . . . The best expert oscillates
between 1 and 2. The player will incur a total loss of T (loss of 1 at every timeslot), whereas selecting a fixed
expert incurs a total loss of T /2, i.e.,

regretT ≥ T − T /2 = Ω(T ). (3)
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The Online Convex Optimization Setting

A player makes decisions iteratively. At the time of making the decision the outcome or outcomes associated
with it is unknown to the player, and can even depend on the action taken by the decision maker.

Player

Possible
decisions

Possible
losses
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The Online Convex Optimization Setting

A player makes decisions iteratively. At the time of making the decision the outcome or outcomes associated
with it is unknown to the player, and can even depend on the action taken by the decision maker.

Player

Possible
decisions

Possible
losses

History

● The losses determined by an adversary should not be allowed to be unbounded.

● The decision set must be bounded and/or structured, and possibly infinite.
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The Online Convex Optimization Setting

OCO models the decision set as a convex set in the Euclidean space X ⊆ Rd, and the costs as bounded
convex functions.

(a) Convex set (b) Non-convex set

(c) Convex functions
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A More Formal Description of OCO

At iteration t, the player picks a new decision xt+1 after incurring the cost ft, according to a mapping
(algorithm) A ∶ (X ×F)t → X given as

xt+1 = A ((x1, f1) , (x2, f2) , . . . , (xt, ft)) ∈ X . (4)

The regret of the player under policy A is then

regretT (A) ≜ sup
(ft)t∈[T ]∈FT

{
T

∑
t=1

ft(xt) − min
x⋆∈X

T

∑
t=1

ft(x
⋆
)} . (5)

When the regret is sublinear (regretT = o(T )), i.e., on average the losses experienced by the player are as good
as the best decision in hindsight.
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Online Spam Filtering
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Online Spam Filtering

Consider an online spam-filtering system. Repeatedly, emails arrive in the system and are classified as spam or
valid. For simplicity, consider a linear variant of the model:

● Each email is represented as a vector a ∈ Rd, where where d is the number of words in the dictionary. The
email is the aggregation of one-hot encoding of words in the dictionary (“bag-of-words” representation).

● To predict whether an email is spam, we learn a filter, a vector x ∈ Rd.

● Given an email at and a label bt, a loss lt(x) = lat,bt(x) is revealed to the player (e.g., the hinge loss
hinge(bt ⋅x

⊺at) =max{0,1 − bt ⋅x
⊺at}).

Such a system has to cope with adversarially generated data and dynamically change with the varying input.
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Online Shortest Paths/Routing
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Online Shortest Paths/Routing

In the online shortest path problem, the decision maker is given a directed graph G = (V,E) and a source-sink
pair u, v ∈ V . The set X of all all distributions over paths (flows) in a graph is a convex set in RE , with
O(m + ∣V ∣) constraints.

At each time step t = 1 to T

● The player chooses a flow xt ∈ X and samples a path pt ∼ xt

● The adversary chooses weights on the edges of the graph wt ∶ E → R. The player incurs the expected loss
ft(xt) = xt ⋅wt.
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Matrix Completion and Recommendation Systems
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Matrix Completion and Recommendation Systems

For example, for the case of binary recommendations for music, we have a matrix X ∈ {0,1}n×m where n is the
number of persons considered, m is the number of songs in our library, and 0/1 signifies dislike/like respectively.

At each time step t = 1 to T

● The player selects a preference matrix Xt ∈ X , where X ⊆ [0,1]n×m (with a rank constraint).

● An adversary then chooses a user/song pair (it, jt) along with a “real” preference for this pair yt ∈ {0,1}.
The loss experienced by the decision maker can be described by some convex loss function,
ft(X) = (Xit,jt − yt)

2.

The natural comparator in this scenario is a low-rank matrix, which corresponds to the intuitive assumption that
preference is determined by few unknown factors
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Online Gradient Descent

At time t, Online Gradient Descent (OGD)’s update rule is

(gradient update) yt+1 = xt − ηt∇ft(xt)

(projection step) xt+1 = ΠX (yt+1)

The operator ΠX ∶ Rd
→ X is the Eulidean projection ΠX (y) ≜ argminx∈X ∥x − y∥2.
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Regret of Online Gradient Descent

Theorem 2

Online gradient descent with fixed step sizes η guarantees the following for all T ≥ 1:

regretT ≤
D2

2η
+
η

2

T

∑
t=1
∥∇ft(xt)∥

2
2 . (6)

For a fixed learning learning rate η = D

G
√

T
, the regret is upper bounded by regretT ≤DG

√
T .
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Regret of Online Gradient Descent (Proof)

A fundamental property of projections into convex bodies is that for an arbitrary x′ ∈ Rd, we have for all x ∈ X :

∥ΠX (x
′
) −x∥

2

2
≤ ∥x′ −x∥

2

2

Applying the above,

∥xt −x
⋆
∥
2
− ∥xt+1 −x

⋆
∥
2

2
= ∥xt −x

⋆
∥
2

2
− ∥ΠX (xt − η∇ft(xt)) −x

⋆
∥
2

2
(7)

≥ ∥xt −x
⋆
∥
2

2
− ∥xt − η∇ft(xt) −x

⋆
∥
2

2
(8)

= 2η∇ft(xt) ⋅ (xt −x
⋆
) − η2

∥∇ft(xt)∥
2
2 (9)

And so,

∇ft(xt) ⋅ (xt −x
⋆
) ≤

1

2η
(∥xt −x

⋆
∥
2

2
− ∥xt+1 −x

⋆
∥
2

2
) +

η

2
∥∇ft(xt)∥

2
2 (10)

Summing over t,

T

∑
t=1
∇ft(xt) ⋅ (xt −x

⋆
) ≤

1

2η
(∥x1 −x

⋆
∥
2

2
− ∥xT+1 −x

⋆
∥
2

2
) +

η

2

T

∑
t=1
∥∇ft(xt)∥

2
2 (11)

≤
D2

2η
+
η

2

T

∑
t=1
∥∇ft(xt)∥

2
2 (12)
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Expert Problem – Applying OGD

We can apply OGD to the expert problem. Recall the the decision set X is the probability simplex n and the
loss of picking an expert is in [0,1]. The diameter of the set is ∥x −x′∥2 ≤D = 1 for x,x′ ∈ n. The gradients

are bounded by ∥∇ft(xt)∥
2
2 ≤ G =

√
n. The regret is sublinear with the rate

√
nT . The dependency on the

number of experts can be improved further!
We will describe a gradient-based scheme that can be tailored to the geometry of the problem.
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Expert Problem – Adapting To Geometry via Online Mirror Descent

Figure: Illustration of online mirror descent

The policy is parameterized by (1) a learning rate η, and (2) a mirror map Φ ∶ D ⊆ Rd
→ R. The projection step

generalizes Euclidean projection and it is given by

ΠΦ
X (y) ≜ argmin

x∈D∩X
DΦ(x,y) = argmin

x∈D∩X
Φ(x) −Φ(y) −∇Φ(y) ⋅ (x − y) (Bregman projection). (13)
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Regret of Online Mirror Descent

Theorem 3

Let Φ be a mirror map ρ-strongly convex on X ∩D w.r.t. ∥ ⋅ ∥. Let R2
= supx∈X∩D Φ(x) −Φ(x1), and ft be

convex and G-Lipschitz w.r.t. ∥ ⋅ ∥. Then online mirror descent with η = R
G

√
2ρ
T

satisfies

T

∑
t=1

ft(xt) − ft(x) ≤
DΦ(x,x1)

η
+ η
∑

T
t=1 ∥∇ft(xt)∥

2
⋆

2ρ
= RL

√
2

ρ
T . (14)

● A differentiable function f is α-strongly-convex with respect to a norm ∥ ⋅ ∥ if ∀x ∈ X

f(x) − f(y) ≤ ∇f(x) ⋅ (x − y) −
α

2
∥x − y∥2 , ∀y ∈ X . (15)

● Let ∥ ⋅ ∥ be a norm on Rd. The dual norm ∥ ⋅ ∥⋆ is defined as ∥u∥⋆ = supx∈Rd,∥x∥≤1 x ⋅u.

Ball setup. When Φ(x) = 1
2
∥x∥22, the dual and primal spaces are identical (∇Φ(x) = x is the identity mapping)

and the Bregman projection is simply the Euclidean projection ΠX . OGD is an instance of OMD.
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Simplex/Entropic Setup of OMD

Simplex/Entropic setup. A more interesting choice of a mirror map is given by the negative entropy

Φ(x) =
d

∑
i=1

xi log(xi). (16)

The Bregman divergence of this mirror map is given by DΦ(x,y) = ∑
d
i=1 xi log(

xi
yi
). The policy configured for

simplex decision sets n amounts to

(gradient update) xt+1,i = xt,ie
−ηlt,i , i ∈ [d] (17)

(projection step) xt+1 =
yt+1
∥yt+1∥1

. (18)

For x1 = (1/n,1/n, . . . ,1/n), one has R2
= log(n) and ∥∇ft(y)∥∞ ≤ G = 1. (The norm ∥ ⋅ ∥∞ is the dual norm of

∥ ⋅ ∥1.) The map Φ is 1-strongly convex w.r.t. ∥ ⋅ ∥1 over the simplex n (Pinsker’s inequality). The regret under

this configuration has rate of
√
log(n)T instead of of

√
nT for OGD. This setup corresponds to the well known

Hedge/Multiplicative Weights Update algorithm.
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Going Beyond Full-Information
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Going Beyond Full-Information – Bandit Convex Optimization

As opposed to the OCO model, in which the decision maker has access to a gradient oracle for ft over X , in
BCO the loss ft(xt) is the only feedback available to the online player at iteration t.

Player

Possible
decisions

Possible
losses

 is not observed!
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Multi-Armed Bandits (MAB)

A classical model for decision making under uncertainty is the multi-armed bandit (MAB) model. This setting is
identical to the setting of prediction from expert advice, the only difference being the feedback available to the
decision maker. Only the loss of the selected expert is revealed!
The MAB problem exhibits an exploration-exploitation tradeoff:

● An efficient (low regret) algorithm has to explore the value of the different actions in order to make the
best decision.

● On the other hand, having gained sufficient information about the environment, a reasonable algorithm
needs to exploit this action by picking the best action.
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A Reduction from Limited Information to Full Information

Lemma 4

Let (f ′t(x) = gt ⋅x)t∈[T ] be a sequence of linear cost functions, and (ft)t∈[T ] be a sequence of differentiable
function, and X be the convex decision set. Let A be an OCO policy with regret bound
regretT (A) ≤ BA(g1,g2, . . . ,gT ) in the full-information setting against losses f ′t. Define the points (xt) as:
x1 ∈ X , xt ← At((xs, f

′
s, )s∈[t−1]) where each gt is a vector valued random variable such that:

E[gt∣x1, f1, . . . ,xt, ft] = ∇ft(xt), (19)

Then the following holds for all x⋆ ∈ X :

E [
T

∑
t=1

ft(xt)] −
T

∑
t=1

ft(x
⋆
) ≤ E [BA(g1,g2, . . . ,gT )] . (20)
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MAB: EXP3 Simultaneous Exploration and Exploitation

Theorem 5

EXP3 with non-negative losses and ϵ =
√

log(n)
Tn

guarantees the following regret bound:

E [
T

∑
t=1

lt,it] − min
i⋆∈[n]

T

∑
t=1

lt,i⋆ ≤ 2
√
Tn log(n). (21)
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Flaxman/Kalai/McMahan (FKM) Algorithm

Theorem 6

FKM algorithm with parameters D

nT3/4 and δ = 1

T1/4 guarantees the following expected regret bound

E [
T

∑
t=1

ft(xt)] −
T

∑
t=1

ft(x
⋆
) ≤ 9nDGT 3/4. (22)

Proof.

(Proof Sketch) The algorithm constructs an unbiased estimator of a convex function that is δ−far from the true
cost function ft. The estimator’s variances scales with 1

δ2
. Selecting δ = 1

T1/4 with a slightly less aggressive OGD,

configured with stepsize η = D

nT3/4 ; combined with the reduction in Lemma 4 ensures the above bound.
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PAC (Probably Approximately Correct) learning and OCO

A learning algorithm has access to samples from an unknown distribution

(x, y) ∼ D,x ∈ X , y ∈ Y. (23)

The goal is to be able to predict y as a function of x, i.e., to learn a mapping (hypothesis) h ∶ X → Y, that
minimizes a prediction error according to a (usually convex) loss function l ∶ Y ×Y → R given as

error(h) ≜ E(x,y)∼D [l(h(x), y)] . (24)

Definition 7

(Agnostic PAC learning) The hypothesis class H is agnostically PAC learnable with respect to loss function
l ∶ Y ×Y → R if the following holds. There exists an algorithm A that accepts ST = {(xt, yt), t ∈ [T ]} and
returns hypothesis hA(ST ) ∈H that satisfies: for any ϵ, δ > 0 there exists a sufficiently large natural number
T = T (ϵ, δ) such that for any distribution D over pairs (x, y) and T (ϵ, δ) samples from this distribution, it holds
that with probability at least 1 − δ

error(hA(ST )) ≤min
h∈H

error(h) + ϵ (25)
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Reduction: Learning → OCO

Theorem 8

Let A be an OCO algorithm whose regret after T iterations is guaranteed to be bounded by regretT (A). Then
for any δ > 0, with probability at least 1 − δ, it holds that

error(h̄) ≤ min
h⋆∈H

error(h⋆) +
regretT (A)

T
+

√
8 log(2/δ)

T
. (26)

For T = O ( 1
ϵ2

log(1/δ) + Tϵ(A)), where Tϵ(A) is the integer T such that regretT (A)/T ≤ ϵ, we have

error(h̄) ≤ min
h⋆∈H

error(h⋆) + ϵ. (27)
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k-Experts Problem

Let us consider a generalization of the expert problem.1 The player has to choose k experts among n given
experts. The number of configurations under this setting is (n

k
), so constructing a distribution (n

k
) already

prohibits having any efficient algorithms. Instead, we can keep track of the marginal probabilities instead, i.e.,
the decisions in

n,k ≜ {x ∈ [0,1]
n
∶ ∥x∥1 = k} . (28)

1No-Regret Caching via Online Mirror Descent. ACM Transactions on Modeling and Performance Evaluation of Computing Systems. T. Si Salem, S. Ioannidis, G. Neglia.
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k-Experts: Casting as a Caching Problem and Dimensionality Reduction

For x ∈ n,k, the component xi corresponds to the probability of selecting file i ∈ [n].

When a request batch rt arrives, the cache incurs the following cost:

frt(xt) = ∑
N
i=1wirt,i(1 − xt,i). (29)
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k-Experts: Recovering the Original Setting

We can construct a sampling scheme Ξ that outputs zt ∈ n,k ∩ {0,1}
n such that E[zt] = xt.

This scheme is called Madow’s sampling. Under Ξ the expected cost of zt is identical to the cost of xt, i.e.,

EΞ [frt(zt)] = frt(xt). (30)

The expected regret regretT (A,Ξ) is the same as the regret of A!
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k-Experts: Switching Costs

In practice, there is a cost associated with switching the decision from zt to zt+1, denoted by UCrt(zt,zt+1).
In the fractional setup, gradient-based algorithms adapt their states proportionally to the learning rate, i.e.,
∥xt+1 −xt∥ = O (η). The total update cost measured in some norm ∥ ⋅ ∥ is given by

T

∑
t=1
∥xt+1 −xt∥ = O (ηT ) = O (

√
T) . (31)

The last equality is obtained for η = Θ ( 1√
T
).

Randomness prevents this property to be transferred to the integral actions zt.
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k-Experts: Independent Sampling

When considering the extended regret (E-RegretT (A,Ξ)) we lose immediately the regret guarantee:

Theorem

Any randomized caching policy constructed by an online policy A combined with online independent rounding as
Ξ leads to Ω(T ) E-Regret(A,Ξ).

Imposing dependence (coupling) between the two consecutive random states may significantly reduce the
expected update cost.
Optimizing for all possible coupling is a min-cost flow problem, or when establishing flows between distributions
it is an optimal transport problem.

f = argmin
[fi,j](i,j)∈[∣pt ∣]×[∣pt+1 ∣]

E [UC (zt,zt+1)] = ∑
∣pt ∣
i=1 ∑

∣pt+1 ∣
j=1 UCrt (ζ

i
t,ζ

j
t+1) fi,j

s.t. ∑
∣pt+1 ∣
j=1 fi,j = pt,i, ∑

∣pt ∣
i=1 fi,j = pt+1,j , fi,j ∈ [0,1],∀(i, j) ∈ [∣pt∣] × [∣pt+1∣].
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k-Experts: Optimal Transport

Remark

We prove that this scheme selected as Ξ, coupled with a no-regret policy A, has sublinear extended regret
guarantee. However, it has a time-complexity O (N3

).
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k-Experts: Simpler Approach

Theorem

A no-regret policy A combined with online coupled rounding Ξ has O (
√
T ) E-RegretT (A,Ξ).

Online Coupled Rounding has linear time complexity.
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k-Experts: Coupling Schemes a Qualitative Evaluation
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