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Contributions Summary

● We initiate the study of mirror descent techniques in the context of caching.

● We demonstrate that the regret of various mirror descent policies depends on the
diversity of the request process, and we characterize the optimality of online mirror
descent (OMD) caching policies under different diversity regimes.

● We show that gradient-based policies can be extended to the integral setting, where the
cache can only store files in their entirety, using opportune randomized rounding
techniques while preserving their regret guarantees.
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Performance Metric

Definition

The regret of a policy A is defined as

RegretT (A) ≜ sup
{rt}

T
t=1∈R

T

{
T

∑
t=1

frt(xt) −min
x∈X

T

∑
t=1

frt(x)} .

When RegretT (A) is sublinear in T , the policy A experiences no regret on average as T →∞.
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Classical Caching Policies

LRU: When a cache hit occurs (item found in the cache), we refresh the content and move it
to the head of a queue, otherwise we evict the least recently requested item from the tail of
the queue.
LFU: We keep the most requested files in the cache.
W-LFU: We keep the most requested files within a time window W . We obtain a trade-off
between adaptability and precision.
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Online Gradient Descent

At time t, Online Gradient Descent (OGD)’s update rule is

(additive gradient update) yt+1 = xt − ηt∇ft(xt)

(projection step) xt+1 = ΠX (yt+1)

The operator ΠX ∶ Rd → X is the Eulidean projection ΠX (y) ≜ argminx∈X ∥x − y∥2.

Paschos et al. [PDVI19a], show that OGD attains sub-linear (O (
√
T)) regret when R = h = 1

in the context of caching.
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Online Mirror Descent (OMD)

A mirror map Φ ∶ D ⊂ RN → R defines a unique algorithm.

Figure: OMD update rule [Bub15].

Desiderata of a Mirror Map

We are concerned with both (a) the regret attained, and (b) computational complexity issues,
particularly pertaining to the associated Bregman projection.
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Negative Entropy Online Mirror Descent

A more interesting choice of a mirror map is given by the negative entropy

Φ(x) =
d

∑
i=1

xi log(xi). (1)

The policy configured for caching decision sets X amounts to

(multiplicative gradient update) yt+1,i = xt,ie
−ηlt,i , i ∈ N (2)

(projection step) xt+1 = argmin
X ∈D∩X

DΦ(x,yt+1) (3)
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Mirror Map Selection

● We provide the first results to guide the selection of the best policy.

Theorem

OGD is optimal for R
h ≤ k (low diversity and large cache sizes). OMDNE is optimal for

R
h > 2

√
Nk (high diversity and small cache sizes).

● We provide a highly efficient projection algorithm for OMDNE that yields a policy with
lowest time-complexity among recent works [PDVI19b, PS21, BBS20, MS21].
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Mirror Map Selection

● We provide the first results to guide the selection of the best policy.

Theorem

OGD is optimal for R
h ≤ k (low diversity and large cache sizes). OMDNE is optimal for

R
h > 2

√
Nk (high diversity and small cache sizes).

● Highly efficient projection algorithm for OMDNE that yields a policy that has the lowest
time-complexity per iteration among recent works [PDVI19b, PS21, BBS20, MS21].
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Update Costs

We define the update cost at time t as UCrt(xt,xt+1) ≜ ∑i∉supp(rt)
w′imax{0, xt+1,i − xt,i}.

(1) (2)

1
3 2 4 1

Repository

Retrieve

1

Retrieve

4

request

(1) (2)

1 2 3 4

Fractional Caching Incurs no Update Costs

We prove that any request batch rt, for OMDNE or OGD, it holds UCrt(xt,xt+1) = 0.
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Integral Caching – Necessity of Randomization

Fractional
Caching

Integral
Caching

Proposition

Any deterministic policy restricted to select integral cache states in Z ≜ X ∩ {0,1}N has linear
regret, i.e.,

RegretT (A) ≥ k (1 − k/N)T.
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Randomized Integral Caching

We restrict ourselves to randomized rounding schemes that output zt ∈ Z such that
E[zt] = xt through some rounding Ξ.

Remark

The expected regret RegretT (A,Ξ) is the same as the regret of A.

A scheme that has this property is Madow’s sampling [MM44]:
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Randomized Integral Caching

When considering the extended regret (E-RegretT (A,Ξ)) we lose immediately the regret
guarantee:

Theorem

Any randomized caching policy constructed by an online policy A combined with online
independent rounding as Ξ leads to Ω(T ) E-Regret(A,Ξ).

Imposing dependence (coupling) between the two consecutive random states may significantly
reduce the expected update cost.
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Randomized Integral Caching – Optimal Transport

Remark

We prove that this scheme selected as Ξ, coupled with a no-regret policy A, has sublinear
extended regret guarantee. However, it has a time-complexity O (N3).
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Randomized Integral Caching – Simpler Approach

Theorem

A no-regret policy A combined with online coupled rounding Ξ has O (
√
T) E-RegretT (A,Ξ).

Online Coupled Rounding has linear time complexity.
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Fixed Popularity

(a) NAC of OGD (b) NAC of OMDNE (c) Time-Averaged Regret

Remark

The learning rate denoted by η∗ is the learning rate that gives the tightest worst-case regrets
for OGD and OMDNE. While this learning rate is selected to protect against any (adversarial)
request sequence, it is not too pessimistic.
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Effect of Diversity

(a) k = 25,α = 0.1 (b) k = 125,α = 0.1

(c) k = 25,α = 0.2 (d) k = 125,α = 0.2

Remark

OMDNE outperforms OGD
in diverse regimes and small
cache sizes, while OGD
outperforms for large cache
sizes and concentrated
requests.
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Robustness to Transient Requests

(a) α = 0.1 (b) α = 0.3 (c) α = 0.4

Remark

We observe that OMDNE is consistently more robust to partial popularity changes than OGD.
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Akamai Trace

Remark

NMAC of the different caching policies evaluated on the Akamai Trace. OMDNE and OGD
provide consistently the best performance compared to W-LFU, LRU and LFU. OGD performs
slightly better than OMD in some parts of the trace.
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Online Randomized Rounding
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(b) Cumulative update cost
29 / 27



Thank you for your attention.
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