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FAIRNESS IN RESOURCE ALLOCATION

Given a set of agents I and a vector of utilities uuu ∈ RI
≥0, the α-fairness criterion is

given by

Fα(uuu) ≜
∑
i∈I

fα(ui), where fα(u) ≜

{
u1−α−1
1−α , for α ∈ R≥0 \ {1},

log(u), for α = 1.

It encompasses the utilitarian principle (Bentham-Edgeworth solution) for α = 0, the
proportional fairness (Nash bargaining solution) for α = 1, and the max-min fairness
(Kalai–Smorodinsky bargaining solution) for α = ∞.

MOTIVATION AND CHALLENGE

Today’s communication and computing systems require studying fairness in time-
varying dynamics, e.g.,

• In small-cell mobile networks the user churn is typically very high and unpre-
dictable, thus hindering the fair allocation of spectrum to cells.

• Caching files at the edge is non-trivial due to fast-changing patterns of requests.

• Increasing virtualization introduces cost and performance volatility.

• ML and user-generated data (e.g., streaming data applications) where the per-
formance (e.g., inference accuracy) depends also on a priori unknown input data
and dynamically selected machine learning libraries.

SYSTEM MODEL

A controller AAA selects at each timeslot t ∈ N a resource allocation profile xxxt from a
set of eligible allocations X based on past agents’ utility functions and its previous
allocations:

xxxt = At

(
{xxxs}t−1

s=1 , {uuus}
t−1
s=1

)
.

The utilities uuut might change due to unknown, unpredictable, and (possibly) non-
stationary perturbations that are revealed to the controller only after it decides its
allocation.
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Fig. 3: Example. Consider two agents I = {1, 2}, α = 1, and a sequence of utilities {uuut(x)}Tt=1 = {(1 + x, 1− x) , (1 + x, 1 + x) , . . . }.

Our focus is on horizon-fairness, which raises novel technical challenges and subsumes slot-
fairness as a special case. The performance of a policy AAA is evaluated by the fairness regret :

RT (Fα,AAA) ≜ sup
{uuut}Tt=1∈UT

max
xxx∈X

Fα

 1

T

∑
t∈T

uuut(xxx)

− Fα

 1

T

∑
t∈T

uuut(xxxt)

 .

• We seek a policy AAA that guarantees vanishing regret (RT (Fα,AAA) ≤ 0 as T → ∞).

MAIN CONTRIBUTIONS

We first establish an impossibility result.

Impossibility Result

There is no policy AAA attaining RT (Fα,AAA) = o (1) for |I| > 1 and α > 0 under an unrestricted
adversary.

We characterize necessary and sufficient restrictions on the adversary

VT ≜ sup
{uuut}Tt=1∈UT

∑
t∈T

∑
i∈I

∣∣δt,i(xxx⋆)∣∣
 , (budgeted-severity)

WT ≜ sup
{uuut}Tt=1∈UT

 inf
{T1,T2,...,TK}

∈Ξ(T )


K∑
k=1

∑
i∈I

∣∣∣∣∣∣
∑
t∈Tk

δt,i(xxx⋆)

∣∣∣∣∣∣+
K∑
k=1

|Tk|2∑
k′<k |Tk| + 1


 . (partitioned-severity)

The adversary is restricted, so that min {VT ,WT } = o(T ). Such a condition captures several
practical utility patterns, such as non-stationary corruptions, ergodic, and periodic inputs.

Online Horizon Fair Policy
We formulate an online saddle point problem through the Fenchel convex conjugate

Ψt,α(θθθ,xxx) = (−Fα)
⋆ (θθθ)− θθθ · uuut(xxx) for xxx ∈ X and θθθ ∈ Θ,

We prove that combining two no-regret policies (gradient ascent in the primal space X and
gradient decent over the dual space Θ) yields the regret guarantee

RT (Fα,AAA) ≤ O
(

1√
T
+
min {VT ,WT }

T

)
= o(1).

EXAMPLE APPLICATION: RESOURCE MANAGEMENT
IN VIRTUALIZED CACHING SYSTEMS
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Fig. 4: Network topologies

(a) α = 1 (b) α = 2 (c) α = 3 (d) Price of Fairness

Fig. 5: Price of fairness under different topologies (TREE-1–3) and varying number of participating agents in {2, 3, 4}.

• We can guarantee horizon-fairness at low price of fairness. The PoF is kept
below 4% under the different setups.
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Fig. 6: Convergence speed under different topologies (TREE-1–3)

• The OHF policy is highly adaptive and yields the appropriate allocations in a few
iterations.

Fig. 7: Nash bargaining (α = 1) scenario under different disagreement points and CYCLE topology.

• The OHF policy attains solutions that are unfeasible (unreachable) by slot-
fairness policies.
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